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Interval Fuzzy Model Identification Using [~.-Norm

Igor Skrjanc, SaSo BlaZi¢, and Osvaldo Agamennoni

Abstract—In this paper, we present a new method of interval
fuzzy model identification. The method combines a fuzzy identi-
fication methodology with some ideas from linear programming
theory. We consider a finite set of measured data, and we use an
optimality criterion that minimizes the maximum estimation error
between the data and the proposed fuzzy model output. The idea
is then extended to modeling the optimal lower and upper bound
functions that define the band which contains all the measurement
values. This results in lower and upper fuzzy models or a fuzzy
model with a set of lower and upper parameters. The model is
called the interval fuzzy model (INFUMO). We also showed that
the proposed structure uniformly approximates the band of any
nonlinear function. The interval fuzzy model identification is a
methodology to approximate functions by taking into account a
finite set of input and output measurements. This approach can
also be used to compress information in the case of large amount
of data and in the case of robust system identification. The method
can be efficiently used in the case of the approximation of the
nonlinear functions family. If the family is defined by a band
containing the whole measurement set, the interval of parameters
is obtained as the result. This is of great importance in the case of
nonlinear circuits’ modeling, especially when the parameters of
the circuits vary within certain tolerance bands.

Index Terms—Fuzzy model, interval fuzzy model (INFUMO),
linear programming, min—-max optimization.

1. INTRODUCTION

HE problem of a function approximation from a finite set

of measured data using an optimality criterion that min-
imizes the estimation error has received a great deal of atten-
tion in the scientific community, especially with the advent of
neural network techniques. Continuous piecewise linear (PWL)
functions have also been used for a function approximation,
particularly since the introduction of the canonical expression
[1] and [2]. Since then a high-level canonical piecewise linear
(HLCPWL) representation of all the continuous PWL mappings
defined over a simplicial partition of a domain in an n-dimen-
sional space has been introduced in [3] and [4]. This representa-
tion is able to uniformly approximate any Lipschitz continuous
function defined on a compact domain. Moreover, in contrast to
neural networks, if the Lipschitz constant of the nonlinear func-
tion is known, it is possible to calculate the number of terms re-
quired to obtain a given error. An upper and lower PWL function
can be evaluated to optimally describe the interval of all the pos-
sible values of the uncertain function. A salient feature of this
methodology is that the approximation problem is reduced to a
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linear programming (LP) problem, for which efficient solution
algorithms exist in [5].

The fuzzy model, in Takagi—Sugeno (TS) form, approxi-
mates the nonlinear system by smoothly interpolating affine
local models [6] and [7]. Each local model contributes to the
global model in a fuzzy subset of the space characterized
by a membership function. This present paper is inspired by
the idea that by using a proper evaluation of triangular shape
membership functions it is possible to emulate the simplicial
HLCPWL approximation technique [4] by following a fuzzy
logic approach. The paper focuses on the development of an in-
terval /.-norm function approximation methodology problem
using the LP technique and the TS fuzzy logic approach. This
results in lower and upper fuzzy models or a fuzzy model
with lower and upper parameters. This model is called the
interval fuzzy model (INFUMO) and it has been shown that
the proposed structure uniformly approximates the band of any
nonlinear function. It is well known that the structure and shape
of if-part fuzzy sets have a significant effect on the fuzzy model
approximation of continuous functions [7], [8]. In this case, the
proposed approach will exhibit an extra degree of flexibility in
the domain partition as well as in the use of different member-
ship functions compared with the HLCPWL technique.

The interval fuzzy model identification is a methodology to
approximate functions of a finite set of input and output mea-
surements that can also be used to compress information in the
case of the nonlinear function family approximation [9] to ob-
tain the interval of parameters that results in a band containing
the whole measurement set. This is of great importance in many
technological areas, e.g., nonlinear circuits modeling, especially
when the parameters of the circuit vary within a certain tolerance
band. Some authors [10]-[12] have proposed models where the
expert knowledge is approximated by upper and lower possi-
bility distributions. In the present paper, the bounds are modeled
independently of each other.

The paper is organized as follows. In Section II, the back-
ground to fuzzy modeling is given. In Section III, the idea of
fuzzy model identification using /., norm is described, in Sec-
tion IV the interval fuzzy model identification is introduced and
in Section V an application to the approximation of continuous
functions is given.

II. A NONLINEAR MODEL DESCRIBED IN FuzzY FORM

A typical fuzzy model [6] is given in the form of rules

R; :if 2,1 iS A g, and @y is Ao g,
and...and x,, is A, 1, then y = ¢;(x)
i=1L...om k=1,...f
ka=1,...,f2
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The g-element vector x| = [&p1,. .., ;] denotes the input
or variables in premise, and the variable ¥ is the output of the
model. With each variable in premise z,;(¢ = 1,...,q), fi
fuzzy sets (A;1,...,A; s,) are connected, and each fuzzy set
A, (k; = 1,...,f;) is associated with a real-valued func-
tion pa,, (®p;) : R — [0,1] that produces the membership
grade of the variable x,; with respect to the fuzzy set A; j,.
To make the list of fuzzy rules complete, all possible variations
of the fuzzy sets are given in (1), yielding the number of fuzzy
rules m = f; X fa X --- x fq. The variables z,,; are not the
only inputs of the fuzzy system. Implicitly, the n-element vector
xT' = [z1,...,x,] also represents an input to the system. This
vector is usually referred to as the consequence vector. The func-
tions ¢>j( -) can in general, be arbitrary smooth functions, al-
though linear or affine functions are usually used.

The system in (1) can be described in closed form if the in-
tersection of the fuzzy sets is previously defined. The general-
ized form of the intersection is the so-called triangular norm
(T-norm). In our case, the latter was chosen as an algebraic
product yielding the output of the fuzzy system shown in (2)
at the bottom of the page. It should be noted that there is a slight
abuse of notation in (2), since j is not explicitly defined as a
running index. From (1), it is evident that each j corresponds to
the specific variation of the indexes k;,2 = 1,...,q.

To simplify (2), a partition of unity is considered where the
functions (3;(x,) defined by (3) at the bottom of the page give
information about the fulfilment of the respective fuzzy rule in
the normalized form. It is obvious that 37", (3;(x,) = 1 irre-
spective of x,, as long as the denominator of 3;(x,) is not equal
to zero (that can be easily prevented by stretching the member-
ship functions over the whole potential area of x;,). Combining
(2) and (3) and changing the summation over k; to a summation
over j we arrive at the following equation:

§= Bi(xp);(x). )
=1

From (4), it is evident that the output of a fuzzy system is a
function of the premise vector x,, (¢-dimensional) and the con-
sequence vector X (n-dimensional). The dimension of the input
space may be lower than (¢ + n), since it is very usual to have
the same variables present in vectors x,, and x. If a vector z is
constructed in the following manner:

T
T X7 =[e, 2000, 24)" (5)
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where x’ consists of those elements of x that are not present in
X,, the following statement can be made about the dimension-
ality d of the input space:

max(q,n) < d < q+n. (6)

The fuzzy system described by (1) or (4) can be seen as a map-
ping from R? to R.

The class of fuzzy models have the form of linear models, this
refers to {37} as a set of basis functions. The use of membership
functions in the input space with overlapping receptive fields
provides interpolation and extrapolation.

Very often, the output value is defined as a linear combination
of consequence states

i=1....m 0] =[01,...,0;]. (D

If the TS model of the Oth order is chosen, ¢;(x) = 6;9, and
in the case of the first-order model, the consequent is ¢;(x) =
00+ Gfx. Both cases can be treated by the model (7) by adding
1 to the vector x and augmenting vector # with ;. To simplify
the notation, only the model in (7) will be treated in the rest of
this paper. If the matrix of the coefficients for the whole set of
rules is written as @7 = [f,...,6,,] and the vector of mem-
bership values as 87 (x,) = [3'(x,), ..., 87 (x,)], then (4)
can be rewritten in the matrix form

7= p"(x,)0x. (8)

The fuzzy model in the form given in (8) is referred to as the
affine TS model and can be used to approximate any arbitrary
function that maps the compact set C C R? to R with any de-
sired degree of accuracy [7], [13], [14]. The generality can be
proved by the Stone—Weierstrass [15] theorem, which indicates
that any continuous function can be approximated by a fuzzy
basis function expansion [16].

III. Fuzzy MODEL IDENTIFICATION USING [, NORM

In this section, we discuss an approach to the model param-
eter estimation where the [, norm is used as the criterion for
the measure of the modeling error. We assume a set of premise
vectors X, = {Xp1,Xp2,...,X,n} and a set of antecedent
(or consequence) vectors X = {xX1,X2,...,Xn}. Assuming
(5),aset Z = {z1,29,...,ZN} can be constructed that rep-
resents the input measurement data, collected from the compact

p fq
S S o s, (@1 s (p2) e pha, ., (pg) 65 (X)

g =

: f.
S L S o sy (1) s, (T2) < ey, ()

(@)

Bi(xp) =

KAy (‘Tpl):qu.kQ (xp2) T l’l'Aq.kq (J:P’I)

q

S Sl iy, (@ )y, (2p2) o pra,, (Tpg)

J=1....m 3)
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set S C R?. A set of corresponding outputs is also defined as
Y = {y1,¥2,.-.,yn}. The measurements satisfy the nonlinear
equation of the system

yi=g(z), i=1,...,N, ©
According to the Stone—Weierstrass theorem, for any given real
continuous function ¢ on a compact set U C R and arbitrary
€ > 0, there exists a fuzzy system f such that

sup |f(z;) — g(z)| < e Vi. (10)

z,€Z
This implies the approximation of any given real continuous
function with the fuzzy function from class F¢ defined in (8).
However, it should be pointed out that low values of € imply
higher values of m that satisfy (10). In the case of an approx-
imation, the error between the measured values and the fuzzy
function outputs can be defined as
e =y — f(xi) Vi (11
To estimate the optimal parameters of the proposed fuzzy func-
tion the minimization of the maximum modeling error
max |y; — f(2:)] (12)
over the whole input set Z is performed. This implies the
min-max optimization method. In the case of the TS model in
(8), the minimization of the expression in (12) can be performed
in two steps. The first problem is how to minimize the error with
respect to x,,. The answer lies in the proper arrangement of the
membership functions. This is a well-known problem in fuzzy
systems, and it can be solved with a cluster analysis [17]-[19]
or with other approaches. The details will not be discussed in
this paper. By having the membership functions defined, the
structure of the model is known and only the parameters ® are
to be defined by the min—max optimization

© = argmin magx [y; — B (x,) x| (13)
or in the equivalent form
m
® = arg Irgn 212%( Yy — JZ_; ﬂj(xpi)ﬂfxi . (14)

Lemma I: The min—max optimization problem can be solved
as the linear programming problem of minimizing A subject to
the inequalities

i — Y Bi(xpi)0] % <A,

i=1,2,...,N
j=1
-y + iﬂj(xm)ofxi <\ i=12,...,N
- A>0 (15)
on the parameter 6;(j = 1,...,m). The resulting A stands for

the maximum approximation error.
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Proof: If we define

A =maslyi = Y f(x0)0] i (16)

J=1

and take into account that z; encapsulates the information in
vectors x,,; and x; [see (5)], this directly implies the following
system of inequalities:

Yi — Zﬂjojrxi <A,

i=1

i=1,2,...,N (7

which can then be written in the form (15). This concludes the
Proof of Lemma 1, and the optimization problem from (14) can
be stated as the minimization of A subject to (15). O

The idea of an approximation can be interpreted as the most
representative fuzzy function to describe the domain of outputs
Y as a function of inputs Z. This problem can also be viewed
as a problem of data reduction, which often appears in identifi-
cation problems with large data sets.

IV. INTERVAL FUZZY MODEL IDENTIFICATION

In the case of an uncertain nonlinear function that can be de-

fined as a member of the family of functions
G={9:S—R'|g(2) = gnom(2) + Ag(z)} (18

where gpom stands for the nominal function and the uncertainty
Ag satisfies sup,cg |Ag(z)] < ¢, c € R.

Let us consider a function g that is a member of the class
g € G and the corresponding set of measured output values
Y = {y1,...,yn} overthe setof inputs Z, i.e.,y; = g(z;),g €
G,z;, € S,s=1,...,N.

The idea of robust interval fuzzy modeling is to find a lower
fuzzy function f and an upper fuzzy function f satisfying
Vz,; € S.

f(zi) < g(2i) < f(2) (19)

In this sense, a function from the class G can always be found
in the band defined by the upper and lower fuzzy functions. The
main aim when defining the band is that it is as narrow as pos-
sible in accordance with the proposed constraints. The problem
has been treated in the literature using the piecewise linear func-
tion approximation [3]. Our approach, using the fuzzy function
approximation, can be viewed as a generalization of the piece-
wise linear approach, and it gives a better approximation, or at
least a much narrower approximation band.

The upper and lower fuzzy functions, respectively, can be
found by solving the following optimization problems:

m}nmg% lyi — f(zi)| subject toy; — f(z:;) >0 (20)

n1jnma>z< lyi — f(zi)| subject toy; — f(z) <0. (21)
f =€

The solutions to both problems can be found by linear pro-
gramming, because both problems can be viewed as linear pro-
gramming problems, as is stated in the following lemma. First
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of all, we have to define a lower and an upper fuzzy function as
i(z) = ﬂT(Xp)@X and f(z) = ﬂT(Xp)QX-

Lemma 2: The min—max optimization problems in (20) and
(21) can be solved as the linear programming problems of min-
imizing A; and As subject to the inequalities

Y —Z,[}J(XPL)QfXL Z 07 1= 1...../N
j=1
A1 >0 (22
and
—yi+ Y BB xi < Xoy  i=1,...,N
7j=1
yi_zﬂj(xpi)ﬂfxi SO, Z:L' '7N
j=1
A2 >0 (23)
on the parameters Qj,aj,j =1,...,m,and Ay and )\, that stand

for the maximum approximation errors of both approximation
functions.
Proof: The proof can be directly inferred from Lemma 1.

Remark 1: Note that f(z) < f(z) does not necessarily hold
for the arbitrary z. This can happen in the part of space where
no identification data were present. The method does not ex-
plicitly check for this, but by choosing a reasonable data set this
phenomenon can be avoided implicitly. This weakness quality
of the model in the part of space where there is not enough ex-
citation is not something particular to the proposed approach.
Rather, it is a well-known property of any identification proce-
dure.

Example 1: Let us define a class G with gnom(z) =
cos(z) sin(z) and the uncertainty Ag(z) = ycos(8z),0 < v <
0.2. The functions from the class are defined in the domain
S = {z] =1 < z < 1} and the set of “measurements” is
Z = {zi|z = 0.021k,k = —47,-46,...,47} C S.In
this case, the dimensionality of the input space is d = 1, and
therefore the premise and the consequent variables are the same
as the measurements, i.e., £,; = 2; = 2;,% = 1,..., N. For
convenience, the independent variable will be denoted by z (or
x;) in the following. The family of functions G for a few values
of  is presented in Fig. 1.

Two approximation models were used to solve the
problem—the first-order fuzzy model and the singleton
fuzzy model. They differ according to the size of vector x
in the fuzzy rule consequence and the size of the parameter
vector @;. In the first approach, the vector has the size of two
(xT = [z,1], 0? = [6;1,6,0]), while in the second approach
the vector x consists only of a constant with the value 1 and
0; = 0jo. Our task is to find the upper and lower bounding
functions by solving the linear programming problems defined
in (22) and (23). In both cases (first-order and singleton model)
eight triangular and equidistant membership functions will be
used (m = 8). They are presented in Fig. 2.
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0.8

Fig. 1.

0.8r

0.4r

0.2r

Fig. 2. Membership function set.

In the case of the first-order fuzzy model, the lower and upper
fuzzy models take the following form:

R j=1,...,m (24)

R;:ifrisAjtheny =02+ 6,

Rj cifxis Aj then y = gjlib + §j07

The results are shown in Fig. 3, where we have the dotted set
of values that belong to the functions set Y and the solid lines
for the lower approximation function f(x) = B (z)©x and the
upper approximation function f(x) = 7 (x)@x. In Fig. 4, the
approximation errors sup ¢ (f(z) — g(x)) and inf g (f(z) —
g(z)) are presented. They show how conservative is the ob-
tained approximation. In other words, they show the difference
between the fuzzy approximation band and the tight envelope
around the family of functions. Naturally, our wish is to ob-
tain the smallest possible error (ideally, both errors presented
in Fig. 4 would be 0).

In the second approach, the consequent vector x is a con-
stant of dimension 1; without any loss of generality it can be
made equal to 1(x = 1). The fuzzy model in this case is called
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Fig. 3. Data, lower, and upper bound.

0.06

oosl inf(I(-g(x)

0.02

error

-0.02

-0.04

-0.06 |

sup(f_(x)-g(x))

-0.08 : ! :
-1 -0.5 0 0.5
X

Fig. 4. Difference between the approximation functions and the actual
envelope of the family of functions.

the singleton fuzzy model. The lower and upper singleton fuzzy
models can be described by the following fuzzy rules:

R, :ifzis Ajtheny = 0, j=1,...
Rj tifxis A]' then y = gjo,

(26)
27

,m

j=1...,m.

The resulting approximation functions reduce to f(z) =
BY(2)® and f(z) = 7 (2)®, and can be obtained by solving
the linear programming problem. The results of the treated
example are shown in Fig. 5, where the dots represent the
set of values {X,Y}, while the solid lines show the lower
and upper approximation functions f and f, respectively. In
Fig. 6 the approximation errors suggeg(i(x) — ¢g(x)) and

infyeg(f(z) — g(z)) are depicted.

Itis obvious that a better approximation is obtained if the first-
order fuzzy model is used. Nevertheless, the singleton model
can also result in a better approximation if the membership func-
tions are arranged in the “optimal” way. In our example, the
focus has been to show the modeling of the uncertainty band
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g,f,f

|
o
©

-1 -0.5 0 0.5 1
X

Fig. 5. Data, lower, and upper bound for the singleton model.

0.2 T T T

0.15

0.1

0.05

error

-0.05

sup(f_(x)-g(x))
-0.15 : : :

-1 -0.5 0 0.5 1
X

Fig. 6. Difference between the approximation functions and the actual
envelope of the family of functions for the singleton model.

for the family of functions. We have assumed a uniform parti-
tioning of the input data interval into eight fuzzy membership
sets. A better approximation or a narrower band could be ob-
tained if we determined the membership functions’ partitioning
using a cluster analysis of the data [17]-[19]. The approxima-
tion by means of the c-means clustering algorithm that is used
to define the optimal fuzzy partitioning with eleven member-
ship functions is shown in Fig. 7. In Fig. 8, the approximation
error is shown. The resulting fuzzy partitioning obtained with
the c-means fuzzy clustering algorithm is shown in Fig. 9.

V. APPLICATION FOR THE APPROXIMATION OF CONTINUOUS
FUNCTIONS

In this section, an application for the approximation of con-
tinuous functions is presented. In the case of higher dimension-
ality the problem of numerous subspaces arises. The identifi-
cation of the interval fuzzy model is, in this case, divided into
two parts. In the first part, we calculate a classical fuzzy model
using the /o-norm optimization to obtain the parameters of the
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g f,f

-1 -0.5 0 0.5 1

Fig. 7. Data, lower, and upper bound for the second singleton model.

0.1
0.08
0.06
0.04 e
inf(f"(x)-9(x))
0.02

error

sup(f_(x)-g(x))

-0.02

-0.04

-0.06

~0.08, -0.5 0 0.5 1

Fig. 8. Difference between the approximation functions and the actual
envelope of the family of functions for the second singleton model.

fuzzy model, and in the second part we use the [.,-norm op-
timization to find the optimal lower and upper bounds of the
data. This is especially interesting in the case when the data
represent families of functions. In our case, the dc-current char-
acteristic Iqs(Vga, Vis) of a Glasmost n-channel Mosfet tran-
sistor is modeled [9]. Equation (28), as shown at the bottom
of the page, represents the static behavior of the device, where
p=00675m>V1lst Oy =138 - 102 Fm=2,Vp =1V,
W =20 pum, L = 2 pm, and V;, = 30 mV. Because the pa-
rameters are in tolerance bands and vary, the model results in
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1.2 . : :
1 _A1 A2 A3 A4 A5 AG A7 A8 AQ A10 A11
0.8} ]

= 0.6 ]
04f 1
0.2f 1

-1 05 ' 05 1

X

Fig. 9. Membership function set for the second singleton model.

= 001, = ““““

.

8 0.005 \\‘:“tst\\,}}sss%s%

g NSNS NN

= 0 et
& N S

9]

§ -0.005

Fig. 10. Upper and lower surfaces of the interval fuzzy model for the Mosfet
characteristic.

domain has been divided into four overlapping subspaces and
both variables have been divided into two equal subspaces. The
rule that is used to model the nonlinear statical characteristic is
the following:

Rj :if Vgs is Al,kl and ng is A27k2 then

Iy = angs+ijgd+rj
ki=1,2 ky=1,2 j57=2k+ky—2.

(29)
(30)

In Fig. 10, the upper and lower bounds of the Mosfet char-
acteristic are presented as an INFUMO model of the following
form:

R; :if Vg is Ay g, and Vigq is Ay i, then

the family of surfaces. The domain of the function I is given Tas =@ Vs + b Vga + 75 G

by S = [Vyo Vya : 0 < Vs < 4,0 < Vg < 4}. The whole bi=1,2 k=12 j=2k+k—2 (32
%(‘/gs — Vad) (Vs + Vga + 2Vin — 21)), Ves 2 Vo, Vea 2 Vo

Iy = P (Vs = Vo) (Vs = Vo + 2Vin) = Vi, (eYea 7V0/V0) — 1)) Ve > V0, Viea < Vo (28)

WgLCOx (Vﬁ (e(vgdfvo/vu,) _
1

1) - (ng - VO + 2‘/th)) )
I'V[ALCOX V;% (e(VgS—Vg/VM,) _ e(ng—Vo/Vth))

Ves < Vo, Vea 2 Vo
Ves < Vo, Vea < Vo

?
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ds_u pp_lds

Fig. 11.
nonlinear Mosfet characteristic.

ds Iow_lds

Fig. 12.
nonlinear Mosfet characteristic.
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IIIII " ""“\‘*\‘\\\ \ I"“:“:‘:”Q‘Q““QQQ
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S\ 1l v \"\?325 / :
' ""llli 4

W

Difference between the lower surface of the INFUMO model and the

E]- 1if Vg is Aq i, and Vg is Ay 1, then

lds = Qngs + ijgd + r; (33)
ki=1,2 ko=1,2 j5=2k +ky—2. (34)

In Figs. 11 and 12, the errors between the INFUMO approxima-
tion and the real nonlinear characteristic are presented.

VI. CONCLUSION

A new method of interval fuzzy model identification is pro-
posed that is applicable when a finite set of measurement data is
available. The method combines a fuzzy identification method-
ology with some ideas from linear programming theory. The
idea is then extended to the modeling of optimal lower and upper
bound functions that define the band that contains all the mea-
surement values. This results in lower and upper fuzzy models
or the INFUMO. The INFUMO model is of great importance
in the case of families of functions where the parameters of the

observed system vary in certain intervals due to the tolerance of
individual elements. It has been shown that the proposed struc-
ture uniformly approximates the band of any nonlinear family
of functions. Some potential areas where the INFUMO model
could be used are fault detection, robust system identification,
robust control, and compressing the information in the case of
large amounts of data.
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